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Abstract

Modern surface Navy ships require dependable and predictable communications,
surveillance, and tracking systems. An accurate model for the propagation of infrared
and optical frequencies through the atmosphere is a requirement for these systems, which
operate over long nearly-horizontal paths that are close to the land or sea surface.
The determination of the propagation environment for surface ships can be a difficult

problem. The most critical portion is the 50-meter-thick surface layer containing the
ship and extending to the horizon. Extended horizontal propagation paths within this
atmospheric surface layer encounter relatively dynamic refractivity conditions.
We will describe the application of the EOSTAR (Electro-Optical Signal Transmis-

sion and Ranging) model suite to provide accurate sensor performance predictions. The
EOSTAR model is built upon a geometrical optics approach to infrared propagation: a
ray is traced through the propagation environment, and path-dependent perturbations
to the signal can be determined. EOSTAR is a valuable tool for prediction and ex-
ploitation of several phenomena common to this environment, and we will discuss the
design and use of three individual modules within the EOSTAR suite: 1. Exploitation
of a sub-refractive mirage to provide a passive ranging capability; 2. A path-dependent
calculation of a refractive propagation factor, or geometric gain; 3. Exploitation of scin-
tillation effects to provide an early detection capability, and the prediction of a signature
frequency and variance to enable detection enhancement.

1 Introduction

EOSTAR (Electro-Optical Signal Transmission and Ranging) is a performance assessment
tool for electro-optical systems. EOSTAR consists of a model suite to provide accurate
sensor performance predictions. The EOSTAR model is built upon a geometrical optics
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approach to infrared propagation: a ray is traced through the propagation environment,
and path-dependent perturbations to the signal can be determined.
The primary computational tool for analysis of refractive effects in the EOSTAR model

is a geometrical optics module that produces a ray-trace calculation for a given refrac-
tive environment. The ray-trace data is utilized to generate detailed information about
geometrical transformations induced by the propagation environment.

1.1 The Vertical Temperature Profile

The geometrical optics ray-trace method is initiated by a definition of the local refractivity
field. We assume that within the marine atmospheric surface layer this field can be con-
sidered to be horizontally homogeneous. For optical and infrared frequencies, the primary
determinant of the refractivity profile is the vertical temperature profile.
The generation of a continuous vertical temperature profile is based upon a surface layer

similarity theory developed by Monin and Obukhov. There are six different bulk models
available in the EOSTAR suite because of the choice of three different micrometeorological
models combined with two different choices for stability function.
The profile is defined in terms of the potential temperature θ which is derived from the

air temperature T by θ = T +Γdz where Γd is the dry adiabatic lapse rate, and z is height
above the surface. Air temperature measurements are taken at the sea surface, and at a
reference height. These sparse data are then used in a bulk model to generate a continuous
vertical profile, and with a sea surface temperature given by T0, the temperature T (z) at a
height z above the water surface is given by:

θ = θ0 +
θ∗
k
[ln(z/Z0θ)−Ψθ(z/L)] (1)

where Z0θ is the roughness length for the temperature profile, θ∗ is the potential temperature
scaling parameter, and θ0 is the surface potential temperature. L is the Monin-Obukhov
length, and Ψθ(z/L) is a stability correction function.

1.2 The Refractivity Gradient and Ray Curvature

The optical path calculation for a ray propagating in the atmosphere requires a determina-
tion of the refractivity field. The near sea surface atmosphere is assumed to be horizontally
homogeneous. The vertical structure is divided into layers, and for each layer a refractivity
gradient can be determined. Our approach follows the work of Lehn [1].
A ray propagating through a medium with a gradient in refractive index will define a

curved path. The refractive index n is defined for visible and infrared frequencies by:

n = 1 + α(λ)
P

T
,

where α(λ) = (77.6 + 0.584λ−2) × 10−6 and λ is the wavelength in micrometers. The
refractivity gradient is

dn

dz
= −

α(λ)P

T 2

(

gβ +
dT

dz

)

(2)
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for density ρ and gravitational acceleration g, and β = 3.485× 10−3. The curvature κ of a
ray is defined such that positive curvature means a ray is concave towards the earth:

κ = −
sin(ζ)

n

dn

dz
. (3)

ζ is the angle between the ray and the normal to the local surface tangent plane. The radius
of curvature r is r = 1/κ, and this yields

r =
nT 2

sin(ζ)α(λ) P (gβ + dT/dz)
(4)

where r > 0 defines a ray that is concave down toward the earth.
For a ray-trace calculation the atmosphere is divided into concentric shells of constant

thickness and constant height. Within each shell or layer, a refractivity gradient is defined
as a function of the temperature gradient. We take the temperature gradient within the
layer to be constant as well, and therefore the radius of curvature for each layer is a constant.
The ray-trace procedure proceeds by determining the entry height z0 and entry angle φ0

of a ray into a layer, where φ0 is the angle with the horizontal. The coordinate system is
established to put the entry point at range x = 0 and height z = z0. The equation for the
ray trajectory in this layer is

z = −
x2

2r
+ x tanφ0 + z0. (5)

An example of the ray-trace procedure and the resultant ray family is shown in fig. 1.
The algorithm described above requires an assumption of piecewise horizontal homo-

geneity of the refractive field: the only gradients in refractive index occur in the vertical
coordinate. The assumption of piecewise horizontal homogeneity means that the computa-
tion of the ray-trace can be confined to a vertical plane. In the remainder of this paper we
will restrict further to an assumption of horizontal homogeneity. The analysis is performed
in this two-dimensional plane and the coordinate system is defined with the origin at mean
sea level so that the receiver location is specified by the coordinates (0, zr) and the trans-
mitter is at (xt, zt). The local coordinate system is further transformed to bring the curved
surface of mean sea level to a horizontal plane (a “flat earth” representation). Thus the
x-axis in the two dimensional representation is the mean sea surface, and range informa-
tion along the propagation path is measured in this coordinate. The z-axis represents the
vertical offset from z = 0 at mean sea level.

2 The Transfer Map

An important application of the geometric optics approach is the calculation of the observ-
able effects of refractive gradients. A fundamental problem is to predict the image of a
source or target at a given range. This information is accessible through the calculation of
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Figure 1: The vertical scale is in meters above the surface, while the horizontal scale is in kilometers
downrange from the sensor which is at a height of 15 meters. The 6 horizontal dashed lines indicate
constant surfaces of 2, 4, 6, 8, 10, and 12 meters to illustrate the passive ranging calculations (they do not
define the layers of constant refractive gradient for the ray trajectory calculation). The rays that appear
to be reflecting from the x-axis are actually refracted.

a transfer map within the EOSTAR model and we will describe this calculation along with
some of its applications.
A bundle of rays is defined at a common point at the receiver to span the vertical

extent of the sensor field-of-view (fig. 1). Each ray ρrefract is generated within the vertical
plane containing the transmitter and receiver starting from the receiver location at (0, zr).
Launch angles φrefract are defined with respect to the ray based at (0, xr) parallel to the x
axis. If the source point is visible (at infrared frequency) to the receiver, we can be certain
that a fan of rays defined for launch angles −π/2 ≤ φrefract ≤ π/2 will include rays that
intercept the source. In practice, the computational angular extent of the fan of rays is
further constrained since rays launched with a sharp downward angle will intercept the x-
axis (earth surface) before the source range is achieved, or rays with a sharp upward launch
angle will remain too high when extended to the source range. In our ray-trace procedure,
there are rays ρrefract initiated at (0, zr) which intersect the Earth’s surface (the x-axis) at
a range x < xt. These rays are terminated in the procedure: there are no reflections at
Earth-surface. There exists a ray launch angle φmin with −π/2 < φmin < π/2 which is the
smallest angle resulting in a ray which will intersect the vertical plane.
There are three important elements that are a result of the occurrence of sub-refractive

mirages:
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1. the existence of a second distinct image of a source point;

2. the orientation (erect vs. inverted) of the image;

3. the local magnification in the image.

All of this information is encoded within a functional dependence of elevation angles at
a selected range: φgeom(φrefract). The transfer map relationship is a map from the geomet-
ric ‘atmosphere-free’ angular position (φgeom) to the refractive ‘apparent’ angular position
(φrefract). The transfer map is dependent upon the receiver height zr at range x = 0, and it
is defined for a vertical plane at the range point x = xt. It is determined by finding all rays
ρrefract originating at the receiver location (0, zr) which intersect a vertical plane at range
x = xt.
A transfer map for the ray-trace in fig. 1 is shown in fig. 2.

Figure 2: The transfer map is a transformation from the geometric (or atmosphere-free) actual angular
position φgeom to the refractive apparent angular position φrefract. This map is calculated for the ray-
trace shown in fig. 1 at a range of 24 km. The dotted-line of φrefract = φgeom indicates an identity
transformation (the atmosphere-free case).

The discrete points represent a continuous curve, and the point of infinite derivative on
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this curve corresponds to the caustic point in the ray-trace envelope. The three important
features noted at the beginning of the section can all be determined from this map. The
magnification δ of the image is determined by

δ =

∣

∣

∣

∣

∣

dφrefract

dφgeom

∣

∣

∣

∣

∣

(6)

and the orientation of the image (erect or inverted) is given by the sign of dφrefract/dφgeom.
The point at which the graph of the transfer map (fig. 2) has infinite slope corresponds to
the caustic point, and this point can also be located on the ray-trace in fig. 1 as the lowest
height for all rays intersecting the vertical line at the 24 km range.

2.1 A visualization of the transfer map

A useful and powerful capability within the EOSTAR program is the display of the target
plane at any range requested by the user. The ray trajectory calculation permits assessment
of image distortion due to atmospheric refraction. Atmospheric refraction becomes impor-
tant for long range observations. Mirage effects occur frequently over the ocean, hampering
identification and affecting the maximum visibility ranges of targets and possible threats to
a ship.

EOSTAR has a number of pre-programmed extended targets that can be placed any-
where in the user-defined space and viewed from any aspect angle to study the atmosphere
effects on IR imaging. These targets are constructed from triangulated facets which can be
given several properties such as temperature and spectral emission coefficient. With this
information and the spectrally resolved atmospheric transmission, background radiation,
and path radiation it is possible to simulate a true spectral image of a target in the scene as
seen by the sensor system and to calculate the radiance or contrast for the selected aspect
angle.
Thus if it is desired to see the effects of the ray-trace shown in fig. 1, the EOSTAR

program, it is possible to open two windows that display an image at any desired range.
The two windows present the image as it if transformed by the refractive effects of the
atmosphere, and the image as it would appear at range without any atmospheric refrac-
tive effects. Examples of synthesized images of a representative ship in a non-refracting
and in a refracting atmosphere are presented in the upper and lower panels of fig. 3 respec-
tively. Contour lines around the elementary triangles are shown to emphasize the individual
elements of the target.
Based on the calculated ray trajectories and the vertical profiles of temperature, humid-

ity and refractive index structure parameter, EOSTAR calculates the path-integrated and
spectrally-resolved transmission, background- and path-radiation, as well as the scintilla-
tion and blur for a point source at a selected position of a distant point target. All these
data, which can be considered as third level data, are summarized in a small monitor form
on the screen for easy access.
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Figure 3: Two image visualizations generated by EOSTAR. The upper panel shows a ship target in a
non-refracting atmosphere (reference view) and the lower panel shows the same target in the refracting
atmosphere similar to the one defined by fig. 1. The gray band crossing horizontally indicates the ocean
surface for the upper panel; in the lower panel the ocean surface elevation is reduced substantially due
to refractive (mirage) effects. The images show only refractive effects, and no turbulence, transmission
or radiative effects.

3 The Refractive Propagation Factor

An application of the transfer map calculation is the determination of a “geometric” gain,
which is a change in signal intensity due entirely to the nature of the refractive field between
target and sensor [2]. The propagation factor F is defined as the ratio between the actual
field amplitude at a selected field point and the corresponding field amplitude at that point
in free-space propagation conditions. The field intensity at the receiver is given in terms of
the field amplitude propagation factor F by

F 2 =
∑

φrefract

∣

∣

∣

∣

∣

dφrefract/dz

dφgeom/dz

∣

∣

∣

∣

∣

(x,z)=(xt,zt)

(7)

where the summation is over all values −π/2 ≤ φrefract ≤ π/2 for which rays terminate at
(xt, yt). The propagation factor is defined for piecewise horizontally homogeneous environ-
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ments, and it is dependent only on the spatial locations of the source point and receiver
point in space. It is therefore necessary mathematically for the definition to include the full
π-radian fan of rays for φrefract to ensure that all rays from a source are accounted for at the
receiver. Therefore at the upper and lower summation limits, φgeom = φrefract = π/2 and
φgeom = φrefract = −π/2 since it is only the vertical rays that are certain to be undeviated
in a piecewise horizontally homogeneous propagation environment. In practice, the field of
view of a sensor will generally be considerably less than π radians.
A fan of rays that has been calculated for a given refractive profile can be used to deduce

the refractive modifications to the observed source intensity. We use a term that is borrowed
from radio-frequency propagation models, and call this multiplicative term the refractive
propagation factor. The word “refractive” is appended to indicate that changes in field
amplitude due to refractive effects are included, but not changes due to any reflection of
the propagating beam. The refractive propagation factor is a function of both the receiver
location and the transmitter location. The receiver is located by definition at zero range,
so the propagation factor is a function of three parameters: receiver height zr, transmitter
height zt, and range xr.
Given the receiver height zr, a two-dimensional field of values for F

2 is determined. At a
range of ≈ 5 km the refractive propagation factor is F 2 ≈ 1, because the field magnification
is nearly neutral (see fig. 1). After a longer propagation path, a sub-refractive mirage
develops, and a second image of the transmitter becomes visible. The combined intensities
from the two images result in a signal intensity greater than the freespace value. This is
indicated by fig. 4 which shows a calculation of the gain-height function at a range of 24 km.
The ray-trace foundation for this calculation can be seen in fig. 1 where a vertical dotted
line indicates the vertical plane at a range of 24 km. In these conditions a sub-refractive
mirage is visible. The plot indicates that a transmitter at a height of 11 m will not be
visible, while a transmitter at 13 m will be detected with a strongly amplified signal.
The height-gain curve implies that F 2 > 1 for z > 13 m, and as height decreases from

30 m, F 2 increases. As height is reduced to ≈ 13 m, F 2 continues to increase and becomes
divergent at zc ≈ 12.5. This is because of the source point approach to a singularity at the
caustic at a range of 24 m. This can be verified by reference to fig. 1 for which the caustic
point is at the intersection of the lowest point of the ray envelope and the vertical line at
range 24 km. There are methods for resolving the singularities at the caustic [3, 4] but
these methods have not yet been implemented in EOSTAR.

4 Applications of the refractive propagation factor, or geo-

metric gain

The EOSTAR application can provide a complete estimate of the effects of the multiple
factors that modify a propagating signal. As an example, for a specified geometry and
meteorological conditions, EOSTAR will determine the molecular extinction (using MOD-
TRAN), the aerosol extinction (using ANAM) and the geometric gain (or refractive propa-
gation.) Each of the processes is then compounded multiplicatively to provide an estimate
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Figure 4: Gain as a function of height at a range of ≈ 24km. Note the large increase in gain at ≈ 13
m height. Below 12 m there is zero signal.

of transmission along a specified ray.
An illustration of the effects of mirages on the received signal strength is provided by

fig. 5 The mirage prediction for the scenario portrayed in fig. 5 is somewhat idealized. A
particular shortcoming is the assumption of a flat surface. This over-simplification can be
rectified by inserting a surface wave field. Crests of the waves will extend above the surface
boundary which defines the Monin-Obukhov theory, and interrupt the ray or beam trace.
This capability exists within EOSTAR, and it is activated by specifying the windspeed in
one of the multiple micro-meteorological models.
During the RED experiment, refractive changes in the signal intensity did not appear

to be a significant factor. The test configuration geometry included a receiver near the sea
surface, a source relatively high above the sea-surface, and a moderate range between the
two. In addition, there were almost always significant wave heights during the test. Initial
application of ray-trace models, using the EOSTAR propagation assessment tool, predicts
that mirage images do not occur for the geometric and environmental conditions during the
test (fig. 6).

5 Sub-Refractive Mirages are Common in the Marine Envi-

ronment

The methods and analysis available within the EOSTAR model are applicable to a wide
range of propagation conditions. In the next two sections we will concentrate on sub-
refractive conditions and the exploitation of mirage images. Sub-refractive conditions occur
essentially when the air temperature at some small height above the surface is less than the
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Figure 5: This coverage diagram depicts the field-of-view of the sensor in a two-color coding; targets in
the green zone will generate a single image (no mirage), whereas targets in the yellow zone may generate
two separated images.

sea temperature: (Tair − Tsea < 0). To get a rough idea of the probability of occurrence of
Tair−Tsea < 0, a survey of 8, 088, 855 shipboard measurements from the Ducting Climatology
Survey over 273 Marsden squares worldwide reveals that Tair− Tsea < 0 for more than 89%
of the samples. The remainder of this section develops a result for passive ranging given
the existence of sub-refractive conditions.
The ray-trace algorithm first defines the vertical profile as a set of discrete layers, each

with a characteristic temperature and refractivity gradient. A characteristic radius of curva-
ture is then assigned to each layer using eqn. (4) above. The conditions for a sub-refractive
mirage require a surface temperature relatively warmer than the air temperature a short
distance above the surface. Monin-Obukhov similarity theory can be applied to deduce the
vertical temperature profile for this situation, since the Richardson number is negative and
unstable conditions apply. The form of the vertical temperature gradient given by similarity
theory is

dT

dz
∝ ln

(

z

z0

)

(8)

where z is the height above the surface. Thus dT/dz has a large negative value very near
the surface and it increases toward zero as height increases. Consider a fixed value of λ and
a constant air pressure as well, since the pressure variations as a function of height can be
neglected for the geometry of interest here, (0 ≤ z ≤ 50 meters), so eqn. (2) can be written

dn

dz
=
−C0

T 2

(

gβ +
dT

dz

)

(9)

This shows that dn/dz is large and positive very near the surface, and that it decreases
monotonically as z increases.
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Figure 6: An example of the use of the EOSTAR tool to predict the region of mirage occurrence (in
yellow), and the region of no mirage (green zone). In this simulation of the test geometry from the
Rough Evaporation Duct test, the source is in a no-mirage zone.

The vertical temperature profile defines a set of layers σ1 . . . σu with σ1 denoting the layer
nearest the surface. A temperature and a height are determined for each layer boundary,
and associated with each layer σi is a vertical thickness ∆zi. Within each layer σi there is an
associated temperature gradient ∇Ti = (dT/dz)z∈σi

. From this we determine a refractivity
gradient ∇Ni = (dn/dz)z∈σi

, and finally by the calculation in eqn. (4) an associated radius
ri. For sub-refractive conditions, T1 > T2 > . . . > Tu. Because of eqn. (8) and eqn. (9)

|∇N1| > |∇N2| > · · · > |∇Nk| (10)

and
|r1| < |r2| < · · · < |ru| . (11)

Since dni/dz < 0 and ri < 0 for all the layers, all rays will be concave upward. The
implication for a ray calculation in sub-refractive conditions is that the radius of curvature
of a ray decreases as the height above the surface decreases.
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6 Using Multiple Mirage Images to Find Height and Range

During sub-refractive mirage conditions, an imaging sensor will record two distinct images
of a single point source. In previous studies it has been shown [5, 6] that the two images
can be exploited to provide both height and range information. We will now show how the
ray-trace procedure within EOSTAR creates a coordinate transformation.
In fig. 1 a receiver has been positioned at a height of 15 meters, and the set of rays

tracing the propagation path defines an envelope. The ray envelope has an intersection
structure with a set of constant-height surfaces at heights of 2, 4, 6, 8, 10, and 12 meters. A
ray traced from the receiver intersects a given constant-height surface either once, twice,
or not at all. The intersection structure of the constant-height surfaces with the ray-trace
envelope induces a transformation.
The result of this transformation is shown in fig. 7. We define an isomet surface as a

surface of constant height, and we will use the term isomet to refer to the contour curves
representing the intersection set between a constant-height surface and the ray-trace enve-
lope shown in fig. 7. Each of the isomets in fig. 7 displays a similar form. The vertical axis
shows angular displacement from the horizontal tangent plane at the sensor. The horizontal
axis shows range.
The graph of a single isomet can be interpreted by imagining a source confined to one

of the isomet surfaces shown in fig. 1 Consider a source on the 12 meter isomet) as it moves
toward the sensor from the 25 km range. At ≈ 23.5 km, the source appears over the horizon
as a single point which immediately splits into two images. As seen through an imaging
sensor, for example, one image decreases in angular elevation, and the upper image increases
in angular elevation as the source moves closer in range. This information is depicted in
fig. 7 and corresponds to the outermost curve labelled “12 m”. At ≈ 11.5 km, the lower
image descends below 2.8 milliradians: in terms of the imaginary sensor, it has descended
beneath the lowest edge of the sensor focal plane. The (now solitary) upper image continues
to rise to the upper edge of the sensor field-of-view.
Within the last 6 km, the source is seen to rapidly move from near the top edge to

disappear below the bottom edge. The shape of the 12 m isomet is characteristic of all the
isomet contours for surfaces of height less than the sensor height. When the isomet surface
height is greater than sensor height, an inbound upper image disappears across the upper
boundary, and never re-crosses from top to bottom.
The key to a deduction of height and range from angular elevation information is the

utilization of those portions of an isomet for which two values of elevation correspond to
a single range value. Thus for the 12−meter isomet, ranges between 11.5 km and 23.5
km correspond to two distinct elevation values. This indicates that it is possible to find a
one-to-one correspondence between a pair of elevation angles, and a height-range pair.
The actual transformation from the (lower angle, upper angle) coordinate space to the

(height, range) coordinate space is shown in fig. 8. When two images are detected by a
sensor, the elevations of the lower and upper images can be plotted as a point in fig. 8, and
the height and range of that point can be read from the inner coordinate system. To say it
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Figure 7: A series of isomets at the heights of 2, 4, 6, 8, 10, and 12 meters. For a given range value,
each isomet defines either 0, 1, or 2 corresponding elevation values.

differently, the figure contains the transformation which takes two elevation measurements
as input, and generates as output both height and range of the source or target. In terms
of coordinate systems, the rectilinear lower elevation vs upper elevation coordinate system
is transformed to the distorted, curvilinear height vs range coordinate system.
Consider as an example an imaging sensor system with a telescope which detects a

source in a sub-refractive mirage regime. The two elevations can be determined from the
imaging frame: suppose (φlower, φupper) = (−2.65,−1.6). The transformation displayed in
fig. 8 shows the actual range and height can be read out from the transformed coordinate
system yielding range ≈ 10 km, and height ≈ 6 m.

6.1 Potential for Application

As we noted above, sub-refractive conditions are quite common for the marine atmospheric
surface layer. For our imaging geometry, these conditions cause mirages that appear at two
different elevations. The usable range for the particular example presented here is from 9
km out to ≈ 18 km. Note that the range limits for effective range-finding are determined
by the intensity of the sub-refractive conditions and by sea-surface roughness. As air-sea
temperature difference Tair − Tsea becomes more negative, the range domain for which two
images occur increases in extent by moving the point of first appearance of two images closer
to the sensor. Conversely, as air-sea temperature difference Tair−Tsea becomes less negative
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Figure 8: The transformation that is implied by the data in fig. 7. The same information is shown here,
but restricted to the portions of the isomets that are dual-valued. For example, the angular elevation
pair (φlower, φupper) = (−2.65,−1.6) transforms to a range ≈ 10 km and a height ≈ 6m.

and closer to zero, the range domain for which two images occur decreases in extent: the
first appearance of two images occurs at a point further away from the sensor. A rough sea
surface will occlude the lowest height rays which will also force the point of first appearance
of mirages further away from the sensor.

7 Conclusions

The EOSTAR propagation prediction model is an integrated model suite for a diverse set
of maritime infrared and optical propagation scenarios. It provides many of the essential
tools for an end-to-end performance prediction.
The primary strength of the EOSTAR tool is the possibility to run through a sequence

of parameter values to visualize the effects on the model output. This permits a fully
interactive approach to any testing of parameter variation on the final transmission values.
The model uses a geometric optics approach to the problem of characterizing sources or
targets at long range within the marine atmospheric surface layer.
The ray method also provides a useful framework for the calculation of other path-

dependent signal metrics such as molecular and aerosol extinction, scintillation and the
refractive index structure function C2

n.
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